EnLight
Möglichkeiten der Energieeinsparung durch intelligente Beleuchtung

EnLight Consortium

29 Partners 3 Years, Jun 2011-2014 Sweden **Finland** Tekes **UPPSALA** Netherlands 🕸 Agentschap NL valopaa UNIVERSITET **PHILIPS PKC GROUP** there. **Tu**Delft **TU/e** Bundesministerium für Bildung und Forschung Germany innovation for life **OSRAM** AME Plugwise Fraunhofer **IN/TA** France MINISTER DE S'ECONOMIE Infineon 00 **la legrand**° 000 0000 Italy

EnLight Project

EnLight is a EU-wide project with 29 partners, funded within the ENIAC framework

To exploit the full potential of solid-state lighting through breakthrough innovations on:

- non-conventional,
- energy efficient,
- intelligent lighting systems,
- beyond LED retrofit applications,
- with the aim of 40% additional energy reduction compared to LED retrofit systems.

EnLight Project

Energy efficient light source -20%

Electrical efficiency

Integrated drivers

Power supply

– Control

Optical efficiency
Thermal efficiency

– Higher LOR

- Lower T_j

- Intelligent control: -20%
 - The right light,
 - at the right amount
 - at the right place
 - at the right time

	•		*	0	₩	7
	Task Tuning	Personal Control	Occupancy Control	Smart Time Scheduling	Daylight Harvesting	Variable Load Shedding
Private Offices (no windows)	•	•	•			•
Private Offices (with windows)	•	•	•		•	•
Open Office (cubicles)	•	•	•	•	•	•
Hallways/Lobbies	•			•		•
Washrooms			•			•
Meeting Rooms	•	•	•	•	•	•
Storage			•	•		•

Outline

- System Architecture key concepts
- Bus Architecture
- Driver Electronics
- Results

System Architecture

Decentralized intelligence / Lighting Control Network (LCN)

'Internet of Things' Architecture

- No central node & no global knowledge of network topology is required
- All decision processes take place locally at each node and no global knowledge of the network is required a priori

System Architecture

Decentralized intelligence / Lighting Control Network (LCN)

Intelligent luminaire is cornerstone building block

- Autonomously controls brightness, CCT, color, beam shape, ...
- Reacts to events instead of being instructed by e.g. a central controller
- All nodes in the network can raise events
- Connection to Building Control Network via area controller

"Intelligence by configuration"

- Rules based behavior: configured during commissioning phase
- Flexible: Ability to adapt/change behavior per node
- Self learning: Ability to adapt behavior as result of global data analysis and data mining

System Architecture Rules example

Set of rules determines the behavior of each luminaire.

Rule = event, condition, action

Desired behavior, e.g.

- Each luminaire is switch off in case of absence
- Luminaire is on (100%) in case of presence
- Luminaires are 70% dimmed if a neighboring luminaire is on.

Rules described in XML


```
<AreaLightingSystem>
       <Luminaire Name="Power Balance" Address="00:0D:6F:00:02:78:C5:D0">
              <Rule Name="presence detected by luminaire">
                      <TriggerEvent Type="PresenceDetected" Address="00:0D:6F:00:02:78:C5:D1"/>
                             <LuminaireSetting Command="SetDimmingLevel">
                                    <Level>1</Level>
                                     <Argument>
                                            <Constant u16>70</Constant u16>
                                    </Argument>
                             </LuminaireSetting>
                      </Action>
              </Rule>
              <Rule Name="presence detected by luminaire">
                      <TriggerEvent Type="PresenceDetected" Address="00:0D:6F:00:02:78:C5:D0"/>
                      <Action>
                             <LuminaireSetting Command="SetDimmingLevel">
                                    <Level>2</Level>
                                     <Argument>
                                            <Constant u16>100</Constant u16>
                                    </Argument>
                             </LuminaireSetting>
                      </Action>
              </Rule>
              <Rule Name="presence detected by luminaire">
                      <TriggerEvent Type="PresenceDetected" Address="00:0D:6F:00:02:78:C5:D2"/>
                      <Action>
                             <LuminaireSetting Command="SetDimmingLevel">
                                    <Level>1</Level>
                                     <Argument>
                                            <Constant u16>70</Constant u16>
                                    </Argument>
                             </LuminaireSetting>
                      </Action>
              </Rule>
       </Luminaire>
</AreaLightingSystem>
```


Outline

- System Architecture key concepts
- Bus Architecture
- Driver Electronics
- Results

Intelligent Luminaire Architecture

Intra Luminaire Bus (ILB)

- I²C based
- Plug & Play
- To decouple lifecycles of independent technologies
- Enables market players to contribute, differentiate and compete

LED Light Engine

Luminaire Controller

Intra Luminaire Communication (ILB) bus (I²C based)

Intelligent Lighting Architecture

Network / Bus Technology

Lighting Control Network:

- Wireless: Zigbee Pro Stack, using a new EnLight Profile
- Wired: UDP / IP

Intra Luminaire Network:

Wired: I²C Phy, using ILB message protocol

Power Network

- 24V high power supply for LED driver
- 5V low power supply for standby operation

Easy interfacing to building management over KNX and compatible with DLT (Ledotron), DALI via adapter

Outline

- System Architecture key concepts
- Bus Architecture
- Driver Electronics
- Results

Hardware Implementation

"Luminaire Lego"

- Intelligent Luminaire Modules
 - LED driver
 - ILB and Zigbee
 - Standard interfaces
 - Optional Controller
 - Expandable to form large luminaires
- Three modules which allow to build luminaires from spot size to wall size
 - 350mA Boost driver board (25...70V)
 - 1000mA Buck driver board (7...21V)
 - Control Board
- All modules can be equipped with a Jennic JN5168 as μController and Zigbee module

Hardware Implementation

Bus System on Board

Concept

- ILB connection via µController JN5168
- I²C communication with PWM expander
- PWM communication with LED driver

Advantages

- Standard interface to ILB
- Full flexibility of string length
- Standalone operation without μController

"luminaire #1 green 50%" (result of rule x) Communication + luminaire controller

"LED Driver #1 green 50%"

Hardware Implementation

1000mA buck driver board

Configuration

- µController / Zigbee JN5168
- PWM expander PCA9685
- LED Driver UBA3070
- Standard interface / daisy chain of all bus systems

Bus Systems

- 24V LED supply
- ILB for intelligent luminaire
- I2C to operate LED driver

Luminaire Designs

<u>Concept</u>

- Re-use hardware modules
- Connect through bus system
- Create functionality by driver software

Hardware Implementation LED Driver / DCDC converter

Voltage selection

- LED string voltages6...70V
- Efficiency scales with voltage ratio
- 24V bus voltage results in a ratio up to 3

LED driver topologies

- Buck converterUBA3070 (NXP) orILD60150 (Infineon)
- Boost converter UBA3077 (NXP)

Hardware Implementation LED Driver / DCDC converter

LED Driver Optimization

- Choice of Flyback Diode strongly affects system efficiency
- PMEG3050BEP offers high efficiency across whole voltage range
- Board operation above
 90° C environment
 temperature possible

Outline

- System Architecture key concepts
- Bus Architecture
- Driver Electronics
- Results

Demonstrator Luminaires

using EnLight Hardware Platform

Spot "Glow 100tm"
IN✓TA

Ceiling Light "Power Balance "

PHILIPS

Wall light "Wedge"

Overall validation methodology

- Office (Philips, VTT) & hospitality (OSRAM) demonstrators
 Comparison between the Baseline and EnLight
 - Energy consumption and illumination measurements
 - → annual energy consumption of the lighting (LENI)
 - User acceptance studies for light quality evaluation
 - → user feedback

Energy saving strategies

Office	Task tuning	Personal control	Occu- pancy	Time schedule	Daylight harvest	Load shedding
Open office	Ambient / task tuning	Desk light	Local sensing with light bubble	Sunrise rhythm	Local constant lux	V
Meeting room	5 Scenes	Scene selection	Local occupancy sensing			
Corridor			Follow me Room Linking	Office hours		V
6am 6pm	6am 6pm	6am 6pm	6am 6pm	6am 6pm	6am 6pm	6am 6pm

Energy consumption in Office VTT Baseline

Time of day 6.30 a.m. 4.30 p.m.

Data from 11.2.2013 - 29.11.2013.

→ A lot of energy is wasted when nobody is there!

Philips Open Office energy snapshot

Meeting the Grand Challenge

Enlight light quality: Office VTT

"Overall impression, quality of light, vista and visual comfort"

EnLight

http://www.enlight-project.eu/

Next Generation Lighting System with

- Decentralized intelligence in the luminaire and end nodes, rule-based, communicating via a Zigbee network,
- Modular intra-luminaire architecture with a ILB digital bus interface,
- Software-defined functionality and minimized hardware.

Acknowledgement: The project is sponsored in the framework of the joint undertaking ENIAC (ENIAC Annual Work Program 2010) and on the basis of the national research program "IKT 2020 – Research for Innovation" by the German Federal Ministry of Education and Research (BMBF)

EnLight

http://www.enlight-project.eu/

Next Generation Lighting System with

- More than 44 % energy savings at similar illumination level and occupancy
- Uniformly distributed illumination with a lighting level according to standards
- End user surveys indicate enhancement in the user comfort

Acknowledgement: The project is sponsored in the framework of the joint undertaking ENIAC (ENIAC Annual Work Program 2010) and on the basis of the national research program "IKT 2020 – Research for Innovation" by the German Federal Ministry of Education and Research (BMBF)

