

MACHINE LEARNING FOR EDGE BASED ANOMALY DETECTION IN ROBOTIC APPLICATIONS

Frieder Jespers,
Philip Ribback
SEPTEMBER 2022

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

Agenda

Introduction

Algorithms

System Overview

Use Case Evaluation

Summary

Introduction

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

WHAT IF ROBOT CELLS COULD AUTOMATICALLY DETECT PROCESS ANOMALIES DURING OPERATION?

Production Quality Improvement

Safety Improvement

Process Downtime Reduction

Maintenance Cost Reduction

HOW TO ACHIEVE THAT?

Edge Computing & Wireless Sensors

Fast System Response Times

High Reliability

High Data Security & Privacy

High Flexibility

Algorithms

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

SUPPORT VECTOR MACHINE

Basic Concept

- Binary classifier
- Creates hyperplane that separates the data classes with maximum margin

$$H = \mathbf{wx} + b = 0$$

Optimization Problem

 $\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$ subject to: $y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1$, i = 1...m

- Convex and quadratic
- Simple to find optimal solution (global minimum)

HOW DOES THE ANOMALY DETECTION WORK? [OCSVM]

AUTOENCODER

Training Objective

- Learn a lowdimensional representation of normal Data
- Best Reconstruction on Training Data
 - ➤ Minimizing Reconstruction Error

Components

- Encoder: Dimension reduction
- Bottleneck (latent space)
- Decoder: Dimension expansion

Training Approach

- Unsupervised Learning
- Semi-Supervised Learning

AUTOENCODER

System Overview

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

SYSTEM SETUP

IMPLEMENTATION: WORKFLOW

QUANTIZATION

Quantization Characteristics

- Quantization reduces model size and increases inference speed
- Neural Processing Unit (NPU) on i.MX8M Plus only supports 8-Bit quantized models
- 8-Bit quantization can reduce model accuracy significantly

Quantization Schemes

- Post training quantization (PTQ)
 - Lower accuracy but faster training
- Quantization aware training (QAT)
 - Higher accuracy but slower training
- Mixed precision quantization
 - Only quantize specific layers inside the model

[1] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. 2021. A Survey of Quantization Methods for Eilcient Neural Network Inference. arXiv:2103.13630 [cs] (June 2021). http://arxiv.org/abs/2103.13630 arXiv: 2103.13630

Use Case Evaluation

SECURE CONNECTIONS FOR A SMARTER WORLD

USE CASE: PICK & PLACE

Operator Faults

Velocity Variation

Loose or Broken Robot Parts

Loose Robot Platform

Collisions

• Loose Mass inside a Box

ANOMALY DETECTION PERFORMANCE

Characteristics

- 4 sensors with 3 axis and 14-Bit resolution
- Sequence length: 8 seconds (windows of 250ms)
- Sampling rate: 800Hz

Dataset

- 1100 Normal sequences
- 200 Anomalous sequences for each anomaly case

	-5% Vel.	Loose Platform	1 Marble	2 Marbles	Tube	+5% Vel.	Total Acc.
OCSVM	50.0%	100.0%	98.5%	99.0%	100.0%	100.0%	91.3%
Autoencoder FP16	90.8%	90.8%	90.8%	90.8%	90.8%	90.8%	90,8%
Autoencoder Int8	66.0%	66.0%	66.0%	66.0%	66.0%	66.0%	66.0%

EDGE PROCESSING TIME EVALUATION

Summary

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

18

CONCLUSION

Edge based anomaly detection

- Model quantization can have huge impact on the detection accuracy
- Autoencoder is advantageous in inference processing time
- Autoencoder eliminates the effort of feature extraction

Improvements

- Train autoencoder with QAT
- Use mixed precision quantization
- Move autoencoder encoder to sensor ->
 Reduction of wireless communication and even fast inference times

SECURE CONNECTIONS FOR A SMARTER WORLD

