Burkhard Laue, Application Marketing 13. September 2018

Nexperia

Aktuelle Trends in Signalschutz und -filterung digitaler Datenübertragung

Agenda

- General aspects for ESD
- Testing methods IEC61000, TLP, VF-TLP..
- ESD protection selection criteria for ESD protection, latest findings for super speed interfaces
- Topology of snap-back ESD protection devices
- Common Mode Filters with ESD protection

ESD – Electro Static Discharge

Material / environmental influences affect charge separation

ESD Damage – IC technology trend

- Trend: Chip size decreases to a minimum
 - Gate thickness and chip size (channel length) decreases
 - Maximum gate voltage decreases (e.g. for CMOS090 <1.5V static)
 - New Processes are optimized for area and performance, NOT for ESD performance!
- Impact: Modern ICs designs are very sensitive to ESD strikes
 - ICs failure due to gate oxide punch through from high voltages
 - ICs failure from Joule heating due to high residual currents
 - → Additional board level ESD protection for external interfaces becomes a must!

Super speed interfaces

Data Speed Increase

Table 7: Overview of data rates for USB interfaces Symbol rate (Baud rate) USB Type Speed class Data Rate Coding method 1.5 Mbit/s= 1.5 MByte/s USB 1.0 Low Speed (LS) NRZI-Code with Bit-Stuffing 187.5 kByte/s 12 Mbit/s 12 Mbit/s= USB 1.0 Full Speed (FS) 1.5 Mbit/s NRZI-Code with Bit-Stuffing 480 Mbit/s= 480 Mbit/s USB 2.0 High Speed (HS) NRZI-Code with Bit-Stuffing 60 MByte/s 4000 Mbit/s = 5000 Mbit/s USB 3.0 Super Speed 500 MByte/s 8b10b-Code 9697 Mbit/s = 10000 Mbit/s USB 3.1 Super Speed + 1212 MByte/s 128b132b-Code 2 lane operation with Type-C connector operation; USB 3.2 Super Speed + doubling of effective data rate

Table 22: List of HDMI key parameters f

HDMI version	1.0	1.1	1.2	1.3	1.4	2.0	2.1
Maximum pixel clock rate (MHz)	165	165	165	340	340	600	no extra clock channel
Maximum TMDS bit rate per lane including 8b/10b coding overhead (Gbit/s)	1.65	1.65	1.65	3.4	3.4	6	12
Maximum total TMDS throughput including 8B/10b coding overhead (Gbit/s)	4.95	4.95	4.95	10.2	10.2	18	48
Maximum audio throughput bit rate (Mbit/s)	36.86	36.86	36.86	36.86	36.86	49.152	49.152
Maximum video resolution over 24 bit/pixel single link	1920* 1200 p/ 60 Hz	1920* 1200 p/ 60 Hz	1920* 1200 p/ 60Hz	2560* 1600 p/ 60 Hz	4096* 2160 p/ 30 Hz	4096* 2160 p/ 60 Hz	7680* 4320 p/ 60 Hz
Maximum color depth (bit/pixel)	24	24	24	48	48	48	48

Testing methods

ESD – Device Level Testing: HBM

Human Body Model

- HBM was developed to simulate the discharge of a human body to a grounded device (IC).
- To replicate an RC network is used:
 - R_{discharge} = 1500 ohms
 - C = 100 pF
- ANSI / ESDA / JEDEC JS-001-2012 for Semiconductor Components
- **Different** from standard EN 61000-4-2 for devices (system level test)

ESD – Device Level Testing: CDM

Charged Device Model

- CDM emulates the process of charging / discharging that can occur in production environments.
- For example, ICs that are poured from plastic tubes and hit a metallic surface.
- It is conceivable that charges have accumulated on the metal pins of an IC or on the package, ultimately discharging through a single grounded pin.
- The discharge current is limited only by parasitic impedances and capacitance.

ESD – System Level Testing: IEC 61000-4-2

ESD – System Level Testing: IEC 61000-4-2

Simplified equivalent circuit diagram of ESD test generator

ESD pulse waveform variation (1)

NoiseKen gun monitored with F-65 current probe

ESD pulse waveform variation (2)

NoiseKen gun monitored with F-65 current probe, shots on 2 Ohm Pellegrini target

Waveforms compliant To IEC61000-4-2,

Good reproducibility

ESD pulse waveform variation (3)

NoiseKen gun monitored with F-65 current probe, shots at PC system target

ESD stray pulses

Nexperia recommends to short the gun to GND before contacting the target, the remove the ground connection and start to shoot.

TLP measurement (1)

Principle of TLP Measurement

- Device under Test (DUT) is subjected to rectangular current pulses
- Duration of these pulses is between
 5ns <u>100 ns</u>,
- The current is increased step by step, until the system starts to show a failure
- Connecting the results to an I_{DUT} versus
 V_{DUT} curve describes the response of a system for ESD surge events
- TLP testing is like curve-tracing for ESD events

ESD performance can be judged exactly, based on TLP curve measurements

TLP measurement (2), how to derive a TLP curve

TLP Test – measurement results

VF-TLP (Very Fast TLP) measurement

Using pulse widths < 10 ns, steep rise/fall times

Better characterization of the switch-on time of the protection diode

Incident and reflected signal are measured separately

(TDR principle, direct current probe is too slow to handle the short pulses)

TLP Test – Set up for component testing

HPPI TLP generator

Generator

2 pulse width extender

Microscope for needle

testing

- With micro manipulators
- Two needle pairs for powerless
- sense

Needle probes

DUT is put backside down on an ceramic insulator tile. The 2 needle pairs are contacted directly (signal pad; ground pad)

TLP measurement (4), selection of a suitable protection

Selection criteria for ESD protection, Findings for super-speed interfaces

ESD – External ESD Protection

Selection Criteria for Protection Devices

- Number of signal lines
- Package (shape/size/footprint) of protection device
- \bullet Reverse stand-off voltage V_{RWM}
- ESD robustness level V_{ESD}
- Clamping voltage V_{clamp}
- Dynamic resistance R_{dyn}
- Topology: uni- / bi-directional, rail to rail, ...
- Device capacitance C_{diode} and other parasitics

ESD test of an extremely sensitive USB interface with an HMM test

vfTLP test for the extremely sensitive USB interface

time (ns)

TLP test for the extremely sensitive USB interface

TLP test for the extremely sensitive USB interface

Finding: SoC is damaged from first overshoot of an ESD strike and not the second shoulder.

Conclusion: the damping of this first overshoot has become an importation for ESD protection products !

Topology of snap-back ESD protection devices

Snap-Back Technologies

System Efficient ESD Design (SEED)

Example CAN Transceiver Reference PCB

Without protection

New ESD protection products (TrEOS 2) Protection

Туре	Capacitance (typical, pF @ 0V)	ESD ruggedness (kV)	Polarity	Package	Remark	
PES2V0Y1BSF	0.69	20	Bidirectional	DSN0603 / SOD962	Single line, ESD protection	
PES2V5Y1BSF	0.25	16	Bidirectional	DSN0603 / SOD962	Single line, ESD protection	
PES3V3Y1BSF	0.26	16	Bidirectional	DSN0603 / SOD962	Single line, ESD protection	
PES4V0Y1BSF	0.26	16	Bidirectional	DSN0603 / SOD962	Single line, ESD protection	
				SOT1176		

Advantages of TREOS2 products:

- Ultra fast turn-on
- <u>Good damping of first overshoots</u>
- Deep snapback -> ultra low Vclamp
- Low Rdyn
- Higher ESD robustness level

New ESD protection products (TrEOS 2) TrEOS

TrEOS 2 example PESD2V0Y1BSF, VF-TLP 4 kV pulse

Clamping curve

VF-TLP Curve, Td = 5ns, tr = 600 ps

	Pulse	Volt	Current	-
621	3970	16.05	76.562	
622	3980	16.11	79.335	4kV clamped dow
623	3990	16.04	77.653	to 16.15 V
624	4000	16.15	77.798	and $30V$ peak,
625	4010	16.20	77.555	Ipp $\sim 78 \text{ A}$
626	4020	16.16	76.889	

ESD application handbook

Design Engineer's Guide

- Release of final PDF August 31st
- Available on Nexperia Website:
- <u>https://efficiencywins.nexperia.com/efficient-products/esd-design-engineers-guide.html</u>
- Print out version available beginning of October

nexperia

Common mode filters with integrated ESD protection

Common Mode Chokes (1)

Modern high-speed and low-voltage interfaces work in differential mode

Common Mode Chokes (2)

Common Mode chokes suppress common noise in differential signals

Critical frequencies in combination with USB3.1

For wireless connectivity, portable devices have wireless transmitters, which operate in the same frequency bands as fast data lines, such as USB3.1

,
GSM 850 - up 824-849 MHz
GSM 850 – dwn 869-894 MHz
GSM 900 – up 890-915 MHz
GSM 900 – dwn 935-960 MHz
GSM 1800 – up 1710-1785 MHz
GSM 1800 - dwn 1805-1880 MHz
GSM 1900 – up 1850-1910 MHz
GSM 1900 - dwn 1930-1990 MHz
WIFI 2.4 – 2.5 GHz
WIFI 4.9 – 5.8 GHz
Bluetooth, 2.4-2.5 GHz
GPS 1.2, 1.5 GHz, GLONASS 1.6 GH
LTE 700/800 MHz, 1700/1900 MHz
LTE 900 MHz, 1.8, 1.9, 2.5, 2.6 GHZ

USB Type-C

PCMFxUSB3B , differential passband and common mode rejection

USB Type-C PCMF1USB3B, microscope pictures

WLCSP Packages 5,10 or 15 balls

For 1, 2 or 3 lanes

EFFICIENCY WINS.