Microtec Nord 2018

Sönke Habenicht Nexperia Germany GmbH, Stresemannallee 101, 22529 Hamburg

Introducing

Nexperia is a dedicated global leader in Discretes, Logic and MOSFETs devices. We became independent at the beginning of 2017...

...and bring decades of proven quality, commitment, and efficiency to automotive applications.

A new force in Discretes, Logic & MOSFETs

With a long history, broad experience and a global customer base.

Key Facts

- A dedicated company for Discretes, Logic and MOSFETs with leadership positions in all product areas
- Over 1.3 billion US\$ revenues (2017)
- More than 13% market share
- High volume production of 90 billion units annually

- 11,000 Employees supporting customers globally
- 2 own frontend, 3 own backend manufacturing sites
- Over 60 years of expertise in semiconductors, the former Standard Products division of NXP
- Headquarters in Nijmegen, The Netherlands

The efficiency company for automotive

Innovation

For electrification and safety

LFPAK MOSFETS
IVN protection
Configurable logic
FlatPower rectifiers
BISS transistors

Quality & reliability Exceeding AEC-Q100/101

Efficient products

+800 types launched within a year

90 billion products every year

Manufacturing

Strategic

focus on Automotive

Vertically integrated – maximum efficiency

Discrete, Logic and MOSFET devices for...

Powertrain 48V Mild Hybrid

- DCDC converter 48V:12V
- Boost starter-generator
- Supercharger
- Water pump

Powertrain 12V ICE

- Engine control
- · Fuel pump
- Transmission
- Alternator, battery, and starter

Lighting

- Front LED lighting
- LED Daytime running light
- Rear LED lighting
- Interior LED lighting

Infotainment

- Dashboard
- Car audio
- Connectivity audio
- Entertainment
- GPS
- Car navigation display

Comfort and control

- Power door
- Power window
- Climate control
- Seat control
- Mirrow and wiper control

Networking & Diagnostic

- CAN
- 11N
- FlexRay
- Ethernet
- BroadR-Reach
- Bluetooth, WiFi
- USB

Safety and control

- ADAS
- Airbag
- TPMS
- Collision warning
- Parking assistent
- · Back monitor

Chassis

- Steering / EPS
- Braking / ABS
- Electronic Parking Brake
- Traction control
- Suspension
- Roll stabiliation

Covering all basic functions enabling automotive electronic applications

- Switching MOSFETs
- ESD / surge protection
- Battery protection
- Free-wheeling diode
- Flyback diode
- DCDC conversion
- Voltage regulation
- Shift register
- I/O expansion
- LED drive

Continuous innovation in silicon & package technology to support Automotive trends

The "Digitalization of the car" creates breakthoughs in connected mobility

- Autonomous driving
- Car-Car-communication
- Car-Infrastructure communication
- "The cabin of the future"

gesture control

microprojectors, etc.

Global semiconductor market

- Automotive: low volume market
- Even lower market for new automotive applications

Global semiconductor market investment challenges

- Investment strategy mainly driven by mass market communication & consumer electronics industry
- Automotive volumes are not capable of financing an own operative landscape in the future

Automotive electronics market Summary

2 major challenges can be derived out of the "Digitalization of the car"

- Leveraging from communication/consumer electronics development and scale without loss of quality
- Improving robustness and resilience of electronic systems in order to manage the rising electronic content in the car without loss of quality

Enabling intelligent transfer concepts

EU-CATRENE project TRACE

Technology readiness in automotive for consumer electronics

Project at a glance:

- lead: BOSCH (A) BOSCH

- > 30 partner covering the whole automotive value chain

- Start: ~	Q2	/20	16
------------	----	-----	----

			Industry :	Start-ups/SME	R&D
	8 L	OEM automotive	VW BMW Daimler Volvo		
	Produkt 8 System	System level (Tier1)	Bosch Continental Siemens Vedecom	iMAR Open Wide Vedecom	
	Pre	Semiconductor Component level	Bosch _{Nexperia} AMS NXP STM	TRONICS IMSYS	CEA
		Design		Silkan RT	ктн
	nz & gje	Technology		QRTECH HELIOX	CEA Uni Siegen Uni Bordeaux
1	Kompetenz 8 Technologie	Test & Validation	AKKA VW	Berliner Nanotest Goepel Fries CWM TWT	Swerea Fraunhofer Uni Bremen
	Κα Τ	Simulation		Catena Coventor	Fraunhofer TU Delft FH Johanneum

Enabling intelligent transfer concepts Trace

EU-CATRENE project TRACE

Technology readiness in automotive for consumer electronics

Consumer

Temperature range	0°C +40°C	
Lifetime	13 years	
Vibration	negligible	
Acceleration	negligible	
ESD safety	up to 3kV	
Acceptable field failures	< 10%	
Failure documentation	no	
Long-term supply	no	

Temperature range	-40°C +155°C	
Lifetime	10 15 years	
Vibration	0 2000 Hz	
Acceleration	500 m/s ²	
ESD safety	up to 15 kV	
Acceptable field failures	Goal: zero failure	
Failure documentation	yes	
Long-term supply	up to 30 years	

Example: QFN board level reliability

Evaluating influence of board level stress/solder fatigue on system lifetime

Collaboration: VW, Volvo, Continental, Bosch, NXP, Nexperia, Sverea, Fhg ENAS

Leadless QFN power temperature cycling test with Fraunhofer ENAS under different test conditions:

CT-scan of solder joints before and after stress

Enabling resilience in automotive

EU-CATRENE project **RESIST**

Resilient integrated systems

nexperia

Project at a glance:

- ca. 20 partner covering the whole automotive value chain

Technische Universität Münche

RESIST

RESilient Integrated SysTems

Project scope:

reliability aware design methods and run-time approaches for next-generation resilient integrated electronic systems in Automotive and Avionics

- Enhancing lifetime of integrated circuits & embedded devices from today's 10-15 years up to tomorrow's 25 years for Automotive and 35 years for Avionics
- Enable an innovative 'design for resilience' approach that is at least 2x more cost-effective than conventional redundancy practices for the same level of system's reliability
- At least 20% increase in the number of integrated components, or integration density of such components, for integrated electronics systems in cars and airplanes for the same, or better level of system's reliability
- Reducing reliability testing costs by 25%, and reducing the qualification time by 30% for integrated electronic components

RESISTRESilient Integrated SysTems

Activity overview

- Resist aims at increasing the quality of integrated circuits and systems by developing
 - Reliability aware design approaches
 - Techniques for improving the reliability
 - Health monitoring on IC/ system level
 - Design for resilience which is 2 times more cost effective than normal redundancy strategies
- Focus are automotive and avionics applications
- The focus is mainly on IC design

Examples: Resilience by system-level ESD

ESD concepts: **ESD** protection for Car Ethernet

Capacitance and ESD robustness can be scaled

Examples: Resilience by system-level ESD

ESD concepts: **ESD** protection for Car Ethernet

ESD simulation algorithm

- Setting up a simulation tool box for modelling ESD-events on components & systems
- Aiming for finding layout dependent ESD weaknesses of components and systems
- Collaboration with Fraunhofer EAS in Dresden

Summary

2 major challenges can be derived out of the "Digitalization of the car"

- Leveraging from consumer electronics development and scale without loss of automotive quality
- Improving robustness and resilience of electronic systems in order to manage the rising electronic content in the car without loss of quality
- The european industry is joining forces to come to the next level for both challenges

EFFICIENCY WINS.