AUTOMATED OPTICAL INSPECTION IN CHIP MANUFACTURING

PUBLIC

Florian Kälber, Frank Karstens **BASLER** SEPTEMBER 2022

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

AGENDA

The Problem

Proof of concept

Prototype

Live Demo

The Problem

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

TRADITIONAL WAVER DEFECT DETECTION METHODS

Templates available: isolate defects Idea: use difference as labels for supervised learning?

Sample

Difference/ label

Proof of concept

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

DATASETS

Public Deep PCB Dataset

- 1500 grayscale samples
- Templates available
- 3-12 defects per sample
- Bounding box annotations

Internal NXP Chip defect Dataset

- 1474 color samples
- Templates available
- 1 centered defect per sample

PREPROCESSING – LABEL GENERATION

Pipeline:

- Image registration (≈ align images)
- Defect isolation
- Binarization (chip defect dataset)

PREPROCESSING – DATA AUGMENTATION

increase the amount of data by adding slightly modified copies of already existing data or newly created synthetic data from existing data Augmentation transformations:

- Rotation
- Cropping
- Horizontal & vertical flipping

UNET: FULLY CONVOLUTIONAL IMAGE SEGMENTATION MODEL

Source: U-Net: Convolutional Networks for Biomedical Image Segmentation, Ronneberger et al. 2015

OUTPUTS

0

1

-

PRETRAINING

• Using pretrained weights (ImageNet) improves results

SHUFFELNET & MOBILENET ENCODER

NP

RESULTS/ EVALUATION

Intersection over Union:

 $\frac{Ground \ Truth \cap Prediction}{Ground \ Truth \cup Prediction}$

DEFECT DETECTION

- OpenPCB Dataset
- Number of defects in Testset: 19610

	Shuffle Unet 0.5	MobileUnet v2 1.0
TP	19040	18919
FP	1770	718
FN	570	718
Precision	0,915	0,964

DBScan Clustering:

COMPUTATIONAL PERFORMANCE

		UNet		MobileUNetv2 1.0		ShuffleUNet 0.5			
	Encoder	Decoder	Σ	Encoder	Decoder	Σ	Encoder	Decoder	Σ
Parameter	19M	12M	31M	2,2M	2,2M	4,4M	0,34M	1,2M	1,6M
FLOPs	13G	24G	37G	0.32G	0.43G	0.75G	0.04G	0.56G	0.61G

PROOF OF CONCEPT - CONCLUSION

- Good Image segmentation results, as well as classification:
 - IoU: ≈0,7
 - Precision: ≥0,96
- Model small enough for embedded applications
- Complement traditional defect detection with a more flexibel system (react to changes in manicaturing, inbetween steps of an assembly line,..)

Prototype

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

IDEA: AI ENABLED VISUAL INSPECTION

Demo and Info mode

MODEL RETRAINING – DATA CHALLENGE

Manufacturing related defects vs artificial anomalies

"Photo of Photo on Display"

MODEL RETRAINING – DATA CHALLENGE

Two possibilities:

Utilizes Preprocessing/semisynthetic data to mimic final input

- + no new training data necessary
- Performance suffers

Generate new Training set similar to final input data

- + best performance
- Tedious image registration/train set generation (automation process necessary)
- intensity and contrast noise on train samples
- EMNIST Dataset:
 - Handwritten letters as "Anomalies"
 - 70,000 images 28x28 pixels

MODEL QUANTIZATION/ PERFORMANCE

- 32bit, converted from PyTorch to Onnx
- Running on ARM cores
- ARM NN Library
- ≈ 240ms Inference time

- Fully quantized 8bit TensorFlow Lite model
- Running completely on Neural Processing Unit
- ≈ 9,5ms Inference time

22

PUBLIC

NXP / Basler Wafer Inspection Demo

@ Embedded world 2022

Public | © Basler AG

Hardware Wafer Inspection Demo

Basler Embedded Vision Processing Kit

- Development Kit for Vision Applications
- Suitable also for series production (population options to reduce unit costs)
- Complete interface population:
 - 2x MIPI-CSI 2, 2x USB 3.0, GigE, HDMI, GPIOs, I2C, SPI, LVDS, UART, CAN, USB 2.0, M 2.0, Bluetooth, Wi-Fi
 - Equipped with NXP i.MX8M Plus SoC

Hardware Wafer Inspection Demo

NXP i.MX8M Plus Featureset

- Neural Processing Unit (NPU) with up to 2.3 TOPS
- Up to 2 cameras with MIPI CSI-2 interface, 1080p60 stereo vision
- Image Signal Processor (ISP) for 4K vision, HDR, de-warp (e.g. fish-eye lens correction)
- High resolution video compression including video encode (including h.265) and decode
- 3D and 2D graphics acceleration GPU based
- Real-time processing with Cortex-M7 @800MHz
- 4x CortexA53 @1.8GHz
- 14nm FinFet, low power, high performance
- Robust control networks supported by dual CAN FD and dual Gigabit Ethernet with Time Sensitive Networking (TSN)

BASLER

Security	Main CPU Platform	Display		
Arm®TrustZone ®		HDMI 2.0a Tx (eARC) with PHY		
Aminimusizone	4 x Arm [®] Cortex [®] -A53	MIPI-DSI (4-lane) with PHY		
DRM Ciphers		1 x LVDS Tx (4 or 8-lane) with PHY		
	32 KB I-cache 32 KB D-cache	Audio		
Secure Clock	Arm NEON™ FPU	18 x I2S TDM 32 bit at 768 kHz		
eFuse Key Storage	512 KB L2 Cache (ECC)	SP/DIF Tx and Rx		
, ,	Secondary Cores	eARC (HDMI)		
Random Number	Tensilica [®] HiFi 4 DSP Cortex-M7	ASRC		
32 KB Secure RAM	768 KB On-chip RAM (ECC)	8-ch. PDM Microphone Input		
		Connectivity and I/O		
System Control	Machine Learning	2 x USB 3.0/2.0 OTG with PHY		
Smart DMA x3	Machine Learning Accelerator: 2.25 TOPS	2 x Gbit Ethernet with IEEE ®1588, AVB (One also supports TSN)		
XTAL	Graphics 3D Graphics: GC7000UL	2 x CAN FD		
PLLs	2D Graphics: GC520L	1 x PCle ®Gen 3 – 1-lane L1 Substates		
Watchdog x 3	Video	4 x UART 5 Mbit/s 5 x I ² C, 3 x SPI		
PWM x 4	1080p60 H.265, H.264, VP9, VP8 decoder	External Memory		
Timer x 6	1080p60 H.265, H.264 encoder	x16/x32 LPDDR4/DDR4/DDR3L (Inline ECC)		
Secure JTAG	10.1	3 x SDIO3.0/MMC5.1		
Secure JIAG	Vision	Dual-ch. QuadSPI (XIP) or		
Temperature Sensor	Camera ISP (2 x 187 MP/1 x 375 MP) dewarp	1 x OctaISPI (XIP)		
	2 x MIPI-CSI (4-lane) with PHY	NAND Controller (BCH62)		

Hardware Wafer Inspection Demo

Basler dart MIPI CSI-2 camera module

- 8 MPix, 30 fps
- MIPI CSI-2 interface
- Uses NXP i.MX8M Plus Image Signal Processor (ISP)
- GenICam compliant compatible to Basler camera SDK (pylon) or gstreamer
- Wide angle lens using the i.MX8M Plus Dewarping hardware block

BASLER

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.