

Fraunhofer-Institut für Siliziumtechnologie ISIT

•

PQ1

•

Florian Ziegler, 14.09.2023, microtec nord 2023

•

PowderMEMS - Technology for innovative MEMS

The Fraunhofer-Gesellschaft

Application-oriented research for the benefit of business and for the benefit of society

Fraunhofer ISIT - the Institute for Silicon Technology

Research and development center for power electronics and MEMS

*FMD – Forschungsfabrik Mikroelektronik Deutschland

The heart of the institute: Our clean rooms and labs

Professional semiconductor production line for development and production for 200 mm wafers on 2500 m² clean room area

Chemical mechanical polishing _____ (CMP), grinding and sawing on 300 m² clean room area

Development and pilot production line for lithium polymer _____ accumulators

area

Various development and measurement laboratories on 900 m²

Our fab s.fhg.de/isit360

PowderMEMS

Wafer-level fabrication process for 3D functional microstructures

1. Dry filling of microcavities

2. Solidification by atomic layer deposition

3. Substrate conditioning for post-processing

Unique set of properties:

- Production of miniaturized magnets possible:
 - Lateral dimensions: approx. 30 to 4000 μm
 - Depth approx. 30 to 1000 µm
- Precise wafer level integration
- Wide choice of powder material
- Low process temperature (75 to 300 °C)
- No organics or sintering involved
- BEOL compatible
- Integration before / after / within standard manufacturing flow possible

More details on the PowderMEMS manufacturing process: https://doi.org/10.3390/mi13030398

Wafer-level chip scale packaging for environmental Sensors

Wafer level packaging of porous caps for environmental Sensors

Processing with only two mask layers

PowderMEMS WLCSP - connections on frontside or via TSV possible

bonded wafer stack

cap wafer dicing

final dicing

PowderMEMS cap does not reduce sensitivity

Demonstrator: humidity sensor SHT35 with PowderMEMS cap

Energy harvesting

Energy Harvesting

A road to battery-free IoT devices

Sweet spot:

- Non of the other sources available
- Hard to reach / costly to replace battery
- Size / costs matters

Energy Harvesting What differentiates us?

General Challenges for vibrational MEMS Energy Harvester

- "High" resonant frequency
- Resonant frequency fixed by design
- High quality factor low power output out-off resonance

USP Fraunhofer ISIT magneto-mechanical MEMS Energy Harvester

- Integration of magnets: high magnetic coupling forces
- Integration of high-density materials, e.g. tungsten: increased mass compared to conventional Si

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Integration of AlScN:

$$FOM|\hat{E}_{max,out} \approx d_{31}g_{31} = \frac{d_{31}^2}{\varepsilon\varepsilon_r}$$

	AIN	AlScN
d ₃₁ (pm/V)	1,97	5,45
ε _r	10,5	16,9
FOM (10 ⁻¹² m³/J)	0,042	0,2

Versatile PowderMEMS energy harvesting platform

Tuning of mechanical properties in the same design

Cross section

Harvester with integrated NdFeB micromagnet array

One MEMS device - Several applications

 Energy harvesting from rotating magnets at excitation frequencies far away from resonance.

 Current sensing in resonance with exceptionally high sensitivity of 43,4 kV/T.

Zero-power wake-up using one of the excitation schemes shown above.

https://doi.org/10.3390/mi13060863 https://doi.org/10.1016/j.sna.2019.111560 https://doi.org/10.3390/mi13030407 https://doi.org/10.1109/ICM54990.2023.10101917

Micromagnets

....

PowderMEMS enables integration of 3D hard and soft micromagnets

Custom shape, different materials and arrangements on wafer level

Morphology

Example: NdFeB magnets in silicon frame

https://doi.org/10.1109/TRANSDUCERS.2019.8808804

- Mechanically stable and easy to handle.
- Various materials, e. g. NdFeB, SmCo, Ferrite, Fe, etc.
- Particles are protected by ALD layer.
- Various substrates suitable, e. g. Si, glass, etc.

Magnetic properties of hard magnetic PowderMEMS micromagnets

Example: two NdFeB powders with mean particle size $d_{50} = 5 \mu m$ and $d_{50} = 25 \mu m$

More information on durability in open access publication <u>https://doi.org/10.3390/mi13050742</u>

PowderMEMS micromagnets - application in Hall and xMR sensors

High miniaturization and cost-effective wafer-level integration

Conventional back-biased setup

- Discrete mounting of the magnet
- Relatively large magnet
- Magnet must be placed precisely according to its magnetization

Integrated PowderMEMS magnet for back or in-plane bias

Integrated magnet

Sensor die

- Modification of existing Hall or xMR sensor designs
- Backside-integration saves wafer device area
- Wafer-level low-temperature process (75 °C to 300 °C)
- Flexible field shaping by custom magnet design
- Reduction of package size

Demonstrator: Integrated PowderMEMS micromagnets for magnetic sensors

Back biased 3D Hall sensor as proof of concept

- Rotation detection of gear wheel demonstrated with 3D Hall sensor and integrated PowderMEMS magnet
- PowderMEMS allows for magnetic field shaping
- Advantage of frame-like field shaping for back-bias:
- Static field at sensor is close to zero
- Higher sensitivity due to higher sensor gain

Fraunhofer

Demonstrator: Integrated PowderMEMS micromagnets for magnetic sensors Back biased 3D Hall sensor as proof of concept

frame-like magnet block magnet Si chip with integrated 0,3 800 meas. distance 0.8 ± 0.2 mm meas. distance $1,4 \pm 0,2$ mm micromagnet 0,2 400 0,1 B (mT) $B\left(\mu T\right)$ 0 and a state of the second s 0.0 A MARCH MARCH -400 -0,1 B -0,2 В -800 Bz B, -0,3 Β. 20 30 50 10 40 60 70 80 0 -1200 20 30 50 60 70 80 10 40 0 t (s) t (s) https://doi.org/10.3390/mi13020235

Wafer-level inspection tools available at Fraunhofer ISIT

Qualitive and Quantitative testing equipment

- Vibrating scanning magnetometer for B-H loop determination on chip level.
- Magneto-optical microscope for fast qualitative inspections and semi-quantitative determination of B_z on wafer-level.

 Developed within Fraunhofer: Hall-sensor-based tool with automatic positioning for fast quantitative 3D measurements on wafer-level.

Line and 3D measurements of a frame-type magnet at a distance of 360 µm.

Group Agglomerated Microsystems

Head of Group

Dr. Björn Gojdka

Technology

Dr. Thomas Lisec, Finn Klingbeil, Mani Teja Bodduluri

Simulations

Dr. Niels Clausen

Non-Magnetic application

Dr. Ole Behrmann, Julia Cipo

Energy Harvester

Dr. Torben Dankwort, Minhaz Ahmed

Integrated Micromagnets

Florian Ziegler

Students

Philipp Hickisch, Tina Höppner, André Lange-Clary, Niklas Kyoushi

Fraunhofer-Institut für Siliziumtechnologie ISIT

Thank you for your attention!

Florian Ziegler Agglomerated Microsystems Tel. +49 4821 17 1465 florian.ziegler@isit.fraunhofer.de

www.isit.fraunhofer.de

Fraunhofer ISIT Fraunhoferstrasse 1 25524 Itzehoe | Germany